Liouville-type theorems for the Navier–Stokes equations
نویسندگان
چکیده
منابع مشابه
Liouville type of theorems with weights for the Navier-Stokes equations and the Euler equations
We study Liouville type of theorems for the Navier-Stokes and the Euler equations on R N , N ≥ 2. Specifically, we prove that if a weak solution (v, p) satisfies |v| 2 +|p| ∈ L 1 (0, T ; L 1 (R N , w 1 (x)dx)) and R N p(x, t)w 2 (x)dx ≥ 0 for some weight functions w 1 (x) and w 2 (x), then the solution is trivial, namely v = 0 almost everywhere on R N × (0, T). Similar results hold for the MHD ...
متن کاملLiouville-Type Theorems for Some Integral Systems
/2 ( ) ( ) u u where is the Fourier transformation and its inverse. The question is to determine for which values of the exponents pi and qi the only nonnegative solution (u, v) of (1) and (2) is trivial, i.e., (u; v) = (0, 0). When 2 , is the case of the Emden-Fowler equation 0 , 0 u u u k in N (5) When ) 3 )( 2 /( ) 2 ( 1 N N N k , it has been prove...
متن کاملLiouville theorems on some indefinite equations
In this note, we present some Liouville type theorems about the nonnegative solutions to some indefinite elliptic equations.
متن کاملLiouville type of theorems for the Euler and the Navier-Stokes equations
We prove Liouville type of theorems for weak solutions of the Navier-Stokes and the Euler equations. In particular, if the pressure satisfies p ∈ L1(0, T ;H1(RN )), then the corresponding velocity should be trivial, namely v = 0 on RN × (0, T ), while if p ∈ L1(0, T ;L1(RN )), then we have equipartition of energy over each component. Similar results hold also for the magnetohydrodynamic equations.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Russian Mathematical Surveys
سال: 2018
ISSN: 0036-0279,1468-4829
DOI: 10.1070/rm9822